MA 3232 - Numerical Analysis Sample Final Exam

Instructions: Work all problems. Read the problems carefully. Show appropriate work, as partial credit will be given. Three pages $(8\frac{1}{2} \text{ by } 11)$ of notes (both sides) and Mathematics Department "Blue Books" of tables permitted.

1. (30 points) Consider the table of data:

\underline{x}	f(x)	$\Delta f(x)$
0.00	0.0000	0.1511
0.15	0.1511	0.1582
0.30	0.3093	0.1738
0.45	0.4831	0.2010
0.60	0.6841	0.2475
0.75	0.9316	0.3286
0.90	1.2602	

- a. Estimate f(0.33) using the most appropriate second-degree Newton-Gregory forward polynomial.
 - b. Estimate the error in your answer to part.a.
- c. How would your answers to parts a. and b. above have changed had you used a second-degree Lagrange polynomial on the same data points?

Exam Continues on Next Page

2. (40 points) Consider the table of data:

<u>x</u>	f(x)
0.00	0.0000
0.15	0.1511
0.30	0.3093
0.45	0.4831
0.60	0.6841
0.75	0.9316
0.90	1.2602
1.05	1.7433
1.20	2.5722

Estimate $\int_0^{1.2} f(x)dx$ using Simpson's rule and estimate the error in your answer.

3. (30 points) a. Using second order, centered differences, replace the differential equation

$$4u'' - u' + u = x$$

by an approximate expression involving terms such as u_i , u_{i-1} , etc., where $u_i = u(x_i)$.

- b. Why is extrapolation (e.g. Romberg) normally *not* used to estimate the error in single-step ordinary differential equation solvers?
- c. A finite difference approximation, when applied to a known function, produces errors that vary according to the step size as follows:

<u>h</u>	error
0.800	0.1396
0.400	0.0081
0.200	0.0005

What is the apparent order of the error for this method?

4. (50 points) Consider the initial value problem

$$y' = \frac{x}{y^2 + 1}$$

$$y(1) = 1$$

with the following tables of values:

\underline{x}	y	y'
1.00	$\overline{1.000}$	0.5000
1.25	1.132	0.5479
1.50	1.272	0.5730

a. Estimate y(2.0) using two steps (h=0.25) of the third-order Adams-Moulton-Bashforth algorithm given by:

$$y_{n+1}^{p} = y_n + \frac{h}{12} \left[23f_n - 16f_{n-1} + 5f_{n-2} \right]$$
$$y_{n+1}^{c} = y_n + \frac{h}{12} \left[5f_{n+1}^{p} + 8f_n - f_{n-1} \right]$$

where

$$f_{n+1}^p = f(x_{n+1}, y_{n+1}^p)$$

b. Would a higher-order Adams-Bashforth-Moulton method have been more appropriate for this problem? (Briefly explain your answer!)

5. (30 points) a. Use two iterations of Newton's method to estimate the root of:

$$f(x) = 4xe^{-x} - 1$$

which lies between x = 0 and x = 0.5.

- b. Estimate the error in your answer for part.a.
- c. Would the Secant method have been preferable to Newton's method for this problem? (*Briefly* explain your answer.)
- 6. (20 points) a. Consider the difference approximation:

$$f'(x_n) \doteq \frac{f_{n+1} - f_{n-1}}{2h}$$

Using Taylor Series, show that the error of this approximation is $O(h^2)$.

b. Is this a forward, backward or central approximation?